Here’s a supplementary resource that
explains self-reference proofs in more
detail than we did in class.

You won’t be expected to write proofs like
this so going through these slides is
completely optional, but we thought we’d
include them in case you're curious :)

The Guide to Self-Reference

—

©

N

~X

Hi everybody:

N—

first fime you see them,

—~

Self —veference proofs can be
pretty hard fo understand the

—

N—

—~

It you're confused - that's okay:
It's totally normal, This stuft is

Tricky,

Once you gef a beffer sense for >
how To strucfure these proots,

I think you'll find that they've not

S bad as they inifially seem,

This lecture slide was the first time
that we really saw self—reference,

and a lot of you got pretty fripped
up by whal was going on, A
N—

- ™~

Part of fhe reason why This can be

Tricky is that whal you're looking at
is a finished product., It you don't
have a sense of where it comes from,

iT's veally hard To understand:
N A

Let's see where it comes from:
we'll fake it from the top.

— ™~

Lef's try To use self—reference
to prove that A, is undecidable,

N—

—

N—

—~

AT a high level, we're going to do

a proof by contradiction,

A, €R

— ™~

We 're going To start off by
assuming that A_, is decidable,

N—

A, €R

— ™~

Somehow, we're qoing To try To
use this To gef fo a confradiction,

N—

> .

Contradiction!

A, €R

— ™~

It we can get a confradiction -
any contradiction - we'll see
That our assumption was wrong.

N—

> .

Contradiction!

A, €R

— ™~

The challenge is figuring oud
exactly how to go and do this,

N—

> .

Contradiction!

A, €R

— ~
Rather than just jumping all the

way To the end, lef's see what
our inifial assumption fells us,

N—

Contradiction!

A, €R

Contradiction!

—

N—

We're assuming that AL, is

—~

decidable, What does that mean?

A, €R

l

There is a decider
D for A,

Contradiction!

~Well, a language is decidable if
there's a decider tor it, so fhat
means there's some decider for A_,.

\ Let's call That decider D.

A, €R

l

There is a decider
D for A,

Contradiction!

— ™~

What might this decider look like?

N—

A, €R

l

There is a decider
D for A,

Contradiction!

Decider D
for A,

—

N—

—~

A decider tor a language is a
Turing machine with a few key

properties,

A, €R

l

There is a decider
D for A,

Contradiction!

Decider D
for A,

—

N—

First, i1 has To always halt,

—~

A, €R

l

There is a decider
D for A,

Contradiction!

@

Decider D
for A,

" That means that if you give it)

any input, it has To either accept
or veject if, We'll visualize This

\wiﬂn these two possible outputs,

A, €R

l

There is a decider
D for A,

Contradiction!

Decider D
for A,

—

N—

NexT, the decider has to tell us

—~

something aboul A,

~X

A, €R

l

There is a decider
D for A,

Contradiction!

Decider D
for A,

—

N—

NexT, the decider has to tell us

—~

something about A_,.

~X

—

N—

As a reminder, AL, is The language
{ (M, w) | MisaTM and M accepts w }

A € R Q
l Decider D
for
There is a decider B
D for A,
Specifically, the decider D needs
to take in an input and fell us
whether that input is in A,
N—
~
As a reminder, AL, is The language
{ (M, w) | MisaTM and M accepts w }
Contradiction!

A, €R

M »
l Decider D
for
There is a decider w B
D for A,

A, is a language of pairs of

TMs and strings, so D will
Take in fwo inpuls, a machine

N M and a STHMK

—

As a reminder, A

v is the language

{ (M, w) | MisaTM and M accepts w }
Contradiction!

A, €R

l

There is a decider
D for A,

Contradiction!

M Q Yes, M accepts w.
Decider D
w for ATM
~ N

means that (M, w) is in AL,

It D accepts ifs input, it

\ “
~

As a reminder, AL, is The language

{ (M, w) | MisaTM and M accepts w }
N—

Apy € R Yes, M accepts w.

M ()
l Decider D
for
There is a decider w Ay
D for A, No, M does not accept w.

— ™~

Otherwise, it D vejects its input,
it means that M doesn't accept w,

\ “
~
As a reminder, AL, is The language
{ (M, w) | MisaTM and M accepts w }
Contradiction!

A, €R

l

There is a decider
D for A,

Contradiction!

M Q Yes, M accepts w.
Decider D
w for ATM
No, M does not accept w.
~ N

N—

So now we've got this TM D
lying around., Whal can we do

with i1?

~X

A € R Yes, M accepts w.

M ()
l Decider D
for
There is a decider w Ay
D for A, No, M does not accept w.

Wi l N We've seen the idea That TMs canm>
prsgizrél‘;vﬁl:t run other TMs as subroutines, This
use D as a helper means we can write programs that

method

o UYse D as a subvomﬂme«

Contradiction!

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

Contradiction!

Yes, M accepts w.

Decider D
for A,
No, M does not accept w.

bool willAccept(string program, string input)

—

Since TMs are kinda like programs,

we

N—

—~

can imagine thal D is a helper
method that looks like fthis,

~X

€eR
Ay M Q Yes, M accepts w.

l Decider D
for
There is a decider w A
D for A, No, M does not accept w.
l bool willAccept(string program, string input)

We can write

programs that
use D as a helper

method Tn mathematics, the convention is >

To use single=letter variable names
tor everything, which isn't good

_ programming style,

Contradiction!

€ER '
Ay willAccept Yes, M accepts w.

M ()
l Decider D
for
There is a decider w Ay
D for A, No, M does not accept w.

l bool willAccept(string program, string input)
We can write

programs that
use D as a helper

method ~ N
Here, the method name

(willAccept) is just a fancier and
more descripfive name tor D,

X

Contradiction!

cR program .
Ay willAccept Yes, M accepts w.

M ()
l Decider D
for
There is a decider w Bam
D for A, tnput No, M does not accept w.

l bool willAccept(string program, string input)
We can write

programs that
use D as a helper

method ~ N
The Two arguments to willAccept

then correspond to the inputs fo
the decider D,

X

Contradiction!

program .
A € R M willAccept Q Yes, M accepts w.
l Decider D
for
There is a decider w Bam
D for A, tnput No, M does not accept w.
l bool willAccept(string program, string input)

We can write

programs that
use D as a helper

method When thinking of D as a decider,

we Think of it accepting or
rejecting. In programming—speak,
\iT's like veturning a boolean.,

Contradiction!

cR program .
Ay willAccept Yes, M accepts w.

M ()
l Decider D
for
There is a decider w Bam
D for A, tnput No, M does not accept w.

l bool willAccept(string program, string input)
We can write

programs that
use D as a helper

method FSo at this point we've just set up
the fact fthal this subroutine exists,
What exactly are we going to do

N— with WPK

Contradiction!

A, E€R progran willAccept

l M Q Yes, M accepts w.

Decider D

for
There is a decider w Bam
D for A, tnput No, M does not accept w.

l bool willAccept(string program, string input)

We can write
programs that
use D as a helper

method ~ N

UHimately, we're trying to gefl
a contradiction,

X

Contradiction!

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

(peciﬁca\\q,, we're going to bm

a program — which we'll call P -
that has some really broken
behavior.. it will accept ifs inpud
it and only if it doesn't accept

\ iTs ivmpu’ﬁ<

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

@Ou've wondering how on eavm

you were supposed To figure oud

That that's the next step, donrt

panic, The first time you see it, it
looks fotally crazy, Once you've
done This a few fimes, you'll

qe\Ta lot more comtorfable with iT.f

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Now, we haven't actually written
this program P yet, Thal's the
next step,

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

If you look af whaf we've said,
right now we have a goal of what
P should do, not how P actually

does that,
N

cR program ,
A M willAccept Q Yes, M accepts w.

l Decider D
for
There is a decider w Bam
D for A, tnput No, M does not accept w.
l bool willAccept(string program, string input)

We can write
programs that
use D as a helper
method

A3

A}

1

[|

[|

[|

[|

|

[|

[|

[|

[|

[|

]

q
'l

N

Program P
accepts its input
if and only if
program P does
not accept its
input

You can think ot this requirement
as a sort ot ‘design specification,”

-------—

Contradiction!

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

o mEmmmm l ------ IS
L4 >
A}

Program P
accepts its input
if and only if
program P does
not accept its
input

-------—

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

Let's acfually go write out a spec
for what P needs 1o do:

cR program ,
A M willAccept Q Yes, M accepts w.

l Decider D
for
There is a decider w Bam
D for A, tnput No, M does not accept w.
l bool willAccept(string program, string input)

We can write

programs that Program P design specification:

use D as a helper
method

o mEmmmm l ------ IS
L4 >
A}

Program P
accepts its input
if and only if
program P does
not accept its
input

Since this requirement is an ‘if and

only it,” we can break it down info
fwo cases.,

N—

-------—

Contradiction!

cR program ,
A M willAccept Q Yes, M accepts w.

l Decider D
for
There is a decider w Bam
D for A, tnput No, M does not accept w.
l bool willAccept(string program, string input)

We can write _ . .
programs that |Program P design specification:

use D as a helper If P accepts its input, then
method P does not accept its input.

A3

A}

1

[|

[|

[|

[|

|

[|

[|

[|

[|

[|

]

q
'l

N

Program P
accepts its input
if and only if
program P does
not accept its
input

First, if this program P is supposed

fo accept ifs input, then it needs
fo not accept ifs input,

W NN BN BN BN BN BN BN BN BN BN B
-------—

Contradiction!

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

A3

A}

1

[|

[|

[|

[|

|

[|

[|

[|

[|

[|

]

q
'l

N

Program P
accepts its input
if and only if
program P does
not accept its
input

W NN BN BN BN BN BN BN BN BN BN B
-------—

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

Nexf, if this program P is supposed

To not accept its input, then it
needs To accept ifs inpuf.

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

~ . . N
We now have a specificafion for

what program P is supposed to do,
Let's see how tTo write iT:

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

/] Program P — ~~

We'll write it in the space
over To the left,

\//

N—

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

/] Program P ~~

Like most programs, our
program begins execulion
in main().,

int main() {

N—

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

// Program P —~~

Our program needs fo
get some inpul, so let's
do fhat here,

int main() {
string input = getInput();

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

// Program P — —~~

Now, we somehow need to
meet fThe design spec given
above,

int main() {
string input = getInput();

N—

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

// Program P — —~~

That means we need fo be
able fo figure out whether
we'vre going To accept,

int main() {
string input = getInput();

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

/] Program P We've got this handy method

lying around that will let us
know whether any program will

N— aCCGPT any %/

int main() {
string input = getInput();

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

// Program P . ~~
What if we had program P ask
whether it was going to accept

something?

\//

int main() {
string input = getInput();

N—

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

[/ Program P

— —~

Crazy as it seems, That's
something we can actually do:

N— \//

int main() {
string input = getInput();

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

progranm

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

/] Program P ~First, let's have our program

get ifs own source code.
(We know this is possibler We

_5aW how fo do ﬁm\o\as;.)/

int main() {
string input = getInput();
string me = mySource();

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

progranm

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

/] Program P 7~ Next, let's call this magic

willAccept method 1o ask whether
we (program P) are going to

int main() {
string input = getInput();

string me = mySource(); _
___ accept our input,
if (willAccept(me, input)) { “-.___/'—”/
} else {
}

}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
If P accepts its input, then
P does not accept its input.
If P does not accept its input, then
P accepts its input.

[/ Program P
Now, let's look back at our
design specification and see whaf
we need fo do,

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {\\“ “‘-.__/_—”/
} else {
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

If P accepts its input, then
P does not accept its input.

fo not accept ifs inpuf.
if (willAccept(me, input)) {\\“ “‘-.__/_—”/

}

Our specification says That, if

this program is supposed to
accept ifs input, then it needs

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

If P accepts its input, then
P does not accept its input.

— —~

What's something we can do fo
not accept our input?

if (willAccept(me, input)) {\\“ “‘-.__/_—”/

}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M

1%

input

willAccept Q Yes, M accepts w.

Decider D
for A,

No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

If P accepts its input, then
P does not accept its input.

—

There's a couple of opfions
here, actually, One of them is
to just go and reject:

if (willAccept(me, input)) {\\“ “‘-.__/_—”/

reject();

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.

— —~

So we've taken care of that
part of fhe design,

\//

N—

if (willAccept(me, input)) {
reject();

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

v
If P does not accept its input, then
P accepts its input.
~ N
What about this part?
~~ \//
else {

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v

If P does not accept its input, then
P accepts its input.

7 This says That if we aren't

supposed to accept the inpuf,
then we should accept fhe

\ impuT.\//

else {

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

v
If P does not accept its input, then
P accepts its input.
~ TN
So let's go add this line 1o
our program,

~— \//

else {

accept();

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
v

% If P does not accept its input, then
P accepts its input.

— —~

And hey! We'vre done with this
part of the design spec.

\//

N—

else {
accept();

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

/] Program P — —~

So letrs take a quick look over
our program P,

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

o mEmmmm l ------ IS
L4 >
A}

Program P
accepts its input
if and only if
program P does
not accept its
input

-------—

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

[/ Program P

: . This is what we said fhat P
int main() {
string input = getInput(); was supposed to do,
string me = mySource(); And heyr That's what it does,
if (willAccept(me, input)) {\\“ ‘-.___~/"”/
reject();
} else {
accept();
}

}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

/] Program P — —~

The whole point of this exercise
was to get a contradiction,

N— \//

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

/] Progran P And, indeed, thaf's what we' v

done! There's a confradiction
here because P accepts if and

int main() {
string input = getInput();
string me = mySource();

Ny it it doesn't accept.
if (willAccept(me, input)) {
reject(); . ~—
} else {
accept();
}

}

-~ e

................................

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

/] Program P — —~

So it you trace through the
implications here..

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

............... l------------._
. S

/There is a decidef“\.l
D for A,

!

We can write

i programs that

: use D as a helper
method

A .’
...............................

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

| Program P design specification:

/ If P accepts its input, then

P does not accept its input.
% If P does not accept its input, then
P accepts its input.

// Program P — —~

So it you trace through the
implications here..

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

A, €R

l

There is a decider
D for A,

-
PRd

...........................
S

i programs that
: use D as a helper
' method

l

: Program P

. accepts its input
: if and only if

. program P does

-~
...............................

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

il Program P design specification:

/ If P accepts its input, then

P does not accept its input.
% If P does not accept its input, then
P accepts its input.

/] Program P — —~

So it you trace through the
implications here..

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

............. L-------_-----
¢¢¢¢¢
4
4

, Program P

. accepts its input

. if and only if

. program P does

i not accept its
input

!

Contradiction!

~ .
...............................

~

-
-

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

/] Program P — —~

So it you trace through the
implications here..

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

// Program P You can see that the starting™

assumpTion That A, is
string input = getInput(); :
etring me = mySource(): decidable leads to a

_contradiction - we're done:
if (willAccept(me, input)) { ‘*-___~/"”/

reject();
} else {
accept();

}
}

int main() {

Heve's that initial lecture
slide aqain,

Take a look at it more
closely,

bool willAccept(string program, string input) {
/* .. some implementation .. */

} I: Recognize this code? Now you

know where i1 comes from:

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

}

}

int main() {

bool willAccept(string program, string input) {
/* .. some implementation .. */

I: We creafed it o get these

contradictions.,

string me = mySource();

string input = getInput();

if (willAccept(me, input)) {

reject();
} else {

accept();
}

Try running this program on any input.
What happens if

... this program accepts its input?
It rejects the input!

... this program doesn't accept its input?
It accepts the input!

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

/] Program P — —~

This might seem like a lof - and
in many ways it is,

\//

int main() {
string input = getInput();
string me = mySource();

N—

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

N—

The key idea here is what's
given over there on the letd

column,

\//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

— —~

This progression comes up In
all the self—reference proofs
we've done this gquarter,

N— \//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

—

N—

—~

We'll do another example of

this in a liftle bit,

\//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

" Before we move on, though,
I thought 1°d take a minute to
falk about a few common

N guesTions weﬂ//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {
reject();

TN
First, let's jump back fo this

parT of the program P that
we wrote,

N— \//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {
reject();

This is the case where program
P is supposed to accept itfs
input, We need to program it

O That i1 OIOSSV‘<//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {
reject();

Here, the specific way we ended
up doing that was by having
program P veject ifs inpul,

N— \//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {
reject();

~
1 mentioned that there were

other things we could do here
as well,

N— \//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {

}

while (true) { }

Here's another option. We could
have the program go info an
infinife loop in this case.

N— \//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design-specificaliGnseeccccccunaax
' If P accepts its input, then :
' P does not accept its input. ,)

4

[/ Program P

if (willAccept(me, input)) {

}

while (true) { }

The design spec here says thal™

P needs to not accept in This
case, and indeed, that's what

haPPems!\//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {

}

while (true) { }

7 lot of people ask us whether™

This is allowed, since we were
assuming we had a decider

\amol deciders oaw;y

A, €R

l

There is a decider
D for A,

!

We can write

programs that |Program P design specification:

use D as a helper / If P accepts its input, then
method P does not accept its input.
Program P /] Program P — —~

accepts its input
if and only if

program P does
not accept its

input if (willAccept(me, input)) {\ \//
l while (true) { }
}

Contradiction!

Turns out, this is fotally fine:

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {

}

while (true) { }

—

N—

—~

There are Two different
programs here,

\//

A €R
{There is a decider
: D for A, !

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

'- --- IS

.
)

1
|
|
|
|
|
|
|
|
|
|
l

S program .

: M willAccept Q Yes, M accepts w.

: Decider D

E w for ATM

L input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:

v

If P accepts its input, then
P does not accept its input.

[/ Program P

if (willAccept(me, input)) {
while (true) { }
}

First, there's this decider D.
D is a decider, so it's
required o halt on all inputs,

N— \//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

______ o

Program P
accepts its input
if and only if
program P does

A Y
1

-----.~

. Input ,

Contradiction!

L4

W - --

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.

/] Program P ¥ There's also this program P.

Program P isn't the decider
tor A, so if's not required

fo halt on all inputs,
if (willAccept(me, input)) {:\ \//
while (true) { }

}

o TN T NN N M EEEEEEE =y
TS E-

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.

7~ 6oing torward, remember Thal N\
these proofs involve fwo
different programs: the decider
for the language, and the

't —vet fial ,
if (willAccept(me, '1nput)){\\“Se A evemuajszﬁff}__”/
while (true) { }

}

[/ Program P

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.

— ™~

The decider is always required
to halt, but the program P
is not,

\//

[/ Program P

N—

if (willAccept(me, input)) {
while (true) { }
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.

— ™~

Let's undo all these changes
so that we can falk about
the next common guestion,

— —

[/ Program P

if (willAccept(me, input)) {
while (true) { }
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

// Program P ~
int main() {
string input = getInput();
string me = mySource();

Much better:

\//

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

[/ Program P

— —~

int main() {
string input = getInput();
string me = mySource();

on To the next question,

\//

N—

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

[/ Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
reject();

} else {
accept();

}

— —~

A lot of people take a look at
The program we've written..

N— \//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

[/ Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
reject();

} else {
accept();

}

—

N—

. and ask whaf happens if we

—~

take these two lines..

\//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

// Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

}

—

. and swap them like fhis,

—~

~

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

// Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

}

—

Usually, people ask whether we
could have just done this and
ended up proving that A, € R,

N—

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

// Program P

int main() {
string input = getInput();
string me = mySource();

}

if (willAccept(me, input)) {
accept();

} else {

}

reject();

—

N—

—~

Turns ouf, that doesn't work.,

Let's see why,

~

A, €R

l

There is a decider

D for A,

!

We can write
programs that
use D as a helper
method

'— ------ l ------- N

! Program P
accepts its input
if and only if
program P does
not accept its
input

e

Contradiction!

‘------

------"

[/ Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

}

N—

—~

Notice thal this program P
doesn't have the behavior given

over here,

\//

A, €R

l

There is a decider

D for A,

!

We can write
programs that
use D as a helper
method

ot

g 5

Program P
accepts its input
if and only if
program P does
. accept its input

~

N

Contradiction!

\ Y

~

[/ Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

}

N—

— | ~~
It you think aboul the behavior

it does have, it looks more
like This.,

\//

A, €R

l

There is a decider

D for A,

!

We can write
programs that
use D as a helper
method

ot

g 5

Program P
accepts its input
if and only if
program P does
. accept its input

~

N

Contradiction!

\ Y

~

[/ Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

}

—

N—

—~

Notice thal this is a true

statement,

\//

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

'

omEEEEEmm’EEmEm S E =D IS

Program P s
accepts its input !
if and only if
program P does
accept its input

L 3
.

el BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B ay

‘\Contradiction! R

| 4

[/ Program P

int main() {

}

string input = getInput();

string me =

if (willAccept(me, input)) {

}
}

accept();
else {
reject();

mySource();

—

N—

—~

Originally, we got a contradiction

here.,

\//

el BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B ay

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

'

omEEEEEmm’EEmEm S E =D IS

Program P \‘ // Program P — —~
accepts its input !
if and only if
program P does
accept its input

L 3
.

int main() { Instead, we've shown that

string input = getInput();
string me = mySource(): we end up at a true statement.

if (willAccept(me, input)) {\\“ “‘-.__/_—”/

accept();
} else {
reject();

}

~.---------------

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
accept its input

// Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

}

However, Take a minute fTo look
at the giant implication given
here,

N— \//

A, €R

// Program P ~ N

int main() { Overall, this shows that
string input = getInput();
string me = mySource();

AL,E€ER - T
if (willAccept(me, input)) {\\“ “‘-.__/_——’/

accept();
} else {
reject();

}
T }

A, €R

P P - i
// Program Does this statement Say awﬂm

int main() { about whether A, is decidable?
string input = getInput();
string me = mySource();

A.,€ER - T
if (willAccept(me, input)) {\\“‘ - ““-._/_——’/

accept();
} else {
reject();

}
T }

A, €R

[/ Program P

int main() {

}

string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
accept();

} else {
reject();

}

implies a fTrue statement.

 Nope: Remember, anything

N— A € R eT\//

N

A, €R

P P i
/] Program 7~ We have no way of kmovnma‘\\

int main() { 0 whether A_, € R or not just
string input = getlInput(); . .
string me = mySource(): by looking at this statement,

Al,€ER - T
if (willAccept(me, input)) {\\“‘ — ““-._/-——’/

accept();
} else {
reject();

)
T)

A, €R

/1 Progran P The fact that we didn 't get)

int main() { 0 a contradiction doesn't mean
string input = getInput(); . .
string me = mySource(): that A, is decidable,

A,€ER - T
if (willAccept(me, input)) {\\“‘ = <—~.__-/-"’/

accept();
} else {
reject();

}
T)

A, €R

[/ Program P

: . Just so we don't gef contused,
int main() { _
string input = getInput(); letrs reset everuthing back 1o
string me = mySource(); how if used to be,
if (willAccept(me, input)) {\\“ ‘-.___~/"”/
accept();
} else {
reject();
T }

}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

// Program P ~
int main() {
string input = getInput();
string me = mySource();

Much better:

\//

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

A, €R

l

There is a decider
D for A,

!

We can write
programs that
use D as a helper
method

l

Program P
accepts its input
if and only if
program P does
not accept its
input

!

Contradiction!

program

M willAccept Q Yes, M accepts w.
Decider D
W for A,
input No, M does not accept w.

bool willAccept(string program, string input)

Program P design specification:
/ If P accepts its input, then
P does not accept its input.
% If P does not accept its input, then
P accepts its input.

/] Progran P 7~ Take a look at the general

structure of how we gotf here,
Then, let's go do another

\ examp\e.\//

int main() {
string input = getInput();
string me = mySource();

if (willAccept(me, input)) {
reject();
} else {
accept();
}
}

~ N

Do you remember the secure
voling problem from lecture?

N—

M is a secure voting machine
if and only if
YM) ={we{r,d}*| whas more r's than d's }

TN
We said that a TM M is a

secure voting machine it if
obeys the above rule,

N—

M is a secure voting machine
if and only if
YM) ={we{r,d}*| whas more r's than d's }

~ N

That's kind of a lot to take
in at once,

N—

M is a secure voting machine

if and only if

----- a

QE(M)E= {we {r,d}*| whas more r's than d's }

COmEm=m-

P
|
|
|

~ TN
Remember - the language of a ™

is The set of all the strings it
accepTs,

N—

M is a secure voting machine

if and only if

So really this statement means that
M accepts every string with more

r's Than d's and nothing else,
N—

M is a secure voting machine
if and only if
YM) ={we{r,d}*| whas more r's than d's }

~Our goal was To show that it's
not possible to build a program
that can fell whether an arbitrary

M is a secure voTing machine,

M is a secure voting machine
if and only if
YM) ={we{r,d}*| whas more r's than d's }

Notice that our goal was not 1o
show that you can't build a secure
voting machine,

N—

M is a secure voting machine
if and only if
YM) =4{wEe€ {r,d}*| whas more r's than d's }

~ N

It s absolutely possible To do
That,

N— %

int main() {
string input = getInput();
if (countRs(input) > countDs(input)) {
accept();
} else {
reject();
}

}

M is a secure voting machine
if and only if
YM) =4{wEe€ {r,d}*| whas more r's than d's }

The hard part is being able to
fell whether an arbitrary program
is a secure voting machine,

N— %

int main() {
string input = getInput();
if (countRs(input) > countDs(input)) {
accept();
} else {
reject();
}

}

M is a secure voting machine
if and only if
YM) =4{wEe€ {r,d}*| whas more r's than d's }

~ N

Here's a program where no one
khows whether i1's a secure
voting machine,

N— ﬂ‘\\\\\\\5§_.a/
int main() {

string input = getInput();

int n = countRs(input);
while (n > 1) {
if (n%2==0)n=n/2;
else n = 3*n + 1;

}

if (countRs(input) > countDs(input)) {
accept();

} else {
reject();

}

}

M is a secure voting machine
if and only if
YM) =4{wEe€ {r,d}*| whas more r's than d's }

~ N

You can see this because no one
knows whether this part will
always terminate,

N— ﬂ‘\\\\\\\5§_.a/
int main() {

string input = getInput();

"int n = countRs(input);
"while (n > 1) {

if (n%2==0)n=n/2;
else n = 3*n + 1;

.----’

|
|
|
|
|
\

} X 4

if (countRs(input) > countDs(input)) {
accept();

} else {
reject();

}

}

M is a secure voting machine
if and only if
YM) =4{wEe€ {r,d}*| whas more r's than d's }

" It's enfively possible that this
goes info an infinite loop on
some inpul - we're honestly

) not suv?i\\\\\\\sg_,,/
int main() {

string input = getInput();

"int n = countRs(input);
"while (n > 1) {

if (n%2==0)n=n/2;
else n = 3*n + 1;

.----’

} X 4

if (countRs(input) > countDs(input)) {
accept();

} else {
reject();

}

}

M is a secure voting machine
if and only if
YM) =4{wEe€ {r,d}*| whas more r's than d's }

~ So, to recap: N

Building a secure voling machine isn*t hard,
Checking whether an arbifrary program is a

N Secure voting machine %

int main() {
string input = getInput();

int n = countRs(input);
while (n > 1) {
if (n%2==0)n=n/2;
else n = 3*n + 1;

}

if (countRs(input) > countDs(input)) {
accept();

} else {
reject();

}

}

~~ Our goal is To show thal the secure vofing
problem - fhe problem ot checking whether a
program is a secure voling machine — is

N— umdecidab\«

The secure voting
problem is
decidable.

~

Following our patfern from before, we'll
assume That the secure voting problem is

N—

decidable,

—

The secure voting
problem is
decidable.

~ N

We 've ulfimately frying fo get some kind of
contradiction here,

— L

-

Contradiction!

The secure voting
problem is
decidable.

~ N

As before, we'll fake it one step at a fime,

- —

Contradiction!

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

Contradiction!

~

—

FirsT, since we're assuming thal the secure
voting problem is decidable, we're assuming

N—

That there's a decider for if.

—

The secure voting

prol?lem is Decider D
decidable. for the secure
l voting problem

There is a decider
D for the secure
voting problem

So whal does that look like?

— N

Contradiction!

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

Contradiction!

M

Decider D
for the secure
voting problem

—

A decider tor The secure voting problem will
Take in some TM M, which is the machine

N—

we wanT fo specifically check,

—

The secure voting Yes, M is a secure voting

problem is M Decider D machine.
decidable. for the secure
l voting problem ,
No, M is not a secure
voting machine.

There is a decider
D for the secure
voting problem

~ N

The decider will then accept it M is a secure
voting machine and reject otherwise,

— -

Contradiction!

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

M

Yes, M is a secure voting

Decider D machine.
for the secure

voting problem .
No, M is not a secure

voting machine.

~

Following our patfern from before, we'll
then say That we can use this decider as a

N—

subroutine in other TMs.

—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

Yes, M is a secure voting
M Decider D machine.

for the secure

voting problem ,
No, M is not a secure

voting machine.

bool isSecure(string program)

~ N

In soffware, that decider D might look
something like whal's given above,

— S

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

i1sSecure

Yes, M is a secure voting

M Decider D machine.
for the secure
voting problem ,
No, M i1s not a secure
voting machine.
bool isSecure(string program)
~ N

Here, isSecure is just another name for the
decider D, but with a more descripfive

N—

hame.,

—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

isSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem ,
No, M is not a secure

voting machine.

bool isSecure(string program)

~ o N
Its argument (program) is just a more

descripfive name for the TM (program) given
as inpul,

- R

The secure voting
problem is
decidable.

!

There is a decider
D for the secure

voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

i1sSecure

progranm Yes, M is a secure voting
M Decider D machine.

for the secure

voting problem ,

No, M is not a secure
voting machine.

bool isSecure(string program)

This was the point in the previous proof where
we starfed to write a design spec tor some

self —reterential program P.

—

N—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

isSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem ,
No, M is not a secure

voting machine.

bool isSecure(string program)

~ N

Previously, we wrote P to gel this confradiction:
‘P accepts it and only it it doesn't accept,*

. S

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

Contradiction!

isSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem ,
No, M is not a secure

voting machine.

bool isSecure(string program)

/ . .
That was a great contradiction To gel when

we had a decider that would fell us whether
a program would accept a given inpuf,

— e

The secure voting

problem is
decidable.

N R RN N NN NN NNNN] IS
¢ l 2

EThere is a decider:

: D for the secure
i voting problem

3

We can write
programs that
use D as a helper
method

Contradiction!

program

M

S -0.V-Tol |1 /- B

L4

Yes, M is a secure voting

Decider D machine.

i

» for the secure
1 voting problem
\

No, M is not a secure
voting machine.

bool isSecure(string program)

~
The

N—

do fhat, Instead, it tells us whether a program

problem here is That our decider doesn't

is a secure voting machine,

—

The secure voting
problem is
decidable.

N R RN N NN NN NNNN] IS
¢ l 2

EThere is a decideri

. D for the secure
» voting problem !

. 1

B — I ------- - ’

We can write
programs that
use D as a helper
method

Contradiction!

S -0.V-Tol |1 /- B

L4

Yes, M is a secure voting
machine.

program

M Decider D

i

» for the secure
1 voting problem
\

No, M is not a secure
---------------- voting machine.

bool isSecure(string program)

~Following the maxim of *do what you can with™>
whal you have where you are,” we'll try fo
set up a confradiction concerning whether a

. Program is or is not a %

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

isSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem ,
No, M is not a secure

voting machine.

bool isSecure(string program)

Specifically, we're going 1o build a program P

that is a secure voting machine it and only it
iT's not a secure voting machine,

- L

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

isSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem ,
No, M is not a secure

voting machine.

bool isSecure(string program)

Generally speaking, you'll Try to setf up a
contfradiction where the program has the property
given by the decider if and only if it doesn't

have the property given %

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

isSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure

voting problem .
No, M is not a secure

voting machine.

bool isSecure(string program)

Generally speaking, you'll Try to setf up a
contfradiction where the program has the property
given by the decider if and only if it doesn't

have the property given %

Pay aftention to thal other guy: Tha’EI

really, veally good advice:

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

isSecure . .
program Yes, M is a secure voting

M Decider D machine.

for the secure

voting problem ,
No, M is not a secure

voting machine.

bool isSecure(string program)

~ N

So now we have fo figure ouf how fo write this
program P,

— —

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

isSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

~ N

As betore, let's start by writing out a design
specification for what if's supposed to do,

. N

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

~ N

This first part fakes care of the first half of
the biconditional,

—

N—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

program

M

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

~ N
This second part takes care of the other
direction,

N—

—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

AT this point, we have written out a spec

for what we want P 1o do. All that's left 1o
do now is To code i1 up:

—

N—

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

isSecure . .
program Yes, M is a secure voting

M Decider D machine.
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

~1n lecture, we wrofe one particular program
that met these requirements, For the sake of
simplicity, I'm going o write a different one

__ Nere. Don'T worry: 11 %

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

program

M

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

int main() { ~ N
Our program starts off in
main().
N—

\//

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure . _
program Yes, M is a secure voting
M Decider D machine.
for the secure

voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

int main() { Ultimately, we need to figure

out it we're a secure vofing
machine or not,

N— \//

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

program

Decider D
M for the secure
voting problem

Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is a secure voting machine, then
P is not a secure voting machine.

If P is not a secure voting machine, then

P is a secure voting machine.

[/ Program P

int main() {

string me = mySource();

N—

— ~
The best tool we have tor that
is some kind of self—veference

Trick,

\//

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

As before, we'll use the fact
that we have this decider lying

around fo make P figure out

__ “hat exacTM,ii:ﬁiiil/__”,

int main() {

string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ™~

Specifically, let's have program
P ask what i1's going to do.

N— \//

int main() {

string me = mySource();

if (isSecure(me)) {

} else {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.
If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ~
Let's Take it one step at a

Time.
<-.__-/—"’/

int main() {

string me = mySource();

if (isSecure(me)) {

N—

} else {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

L — ~~
tnt main() { oddly enough, let's look at the

second requirement first,
Why? 1 ask: why not?

\//

string me = mySource();

if (isSecure(me)) {

N—

} else {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

/] Program P This requirement says That if

the program is supposed to not
be a secure voling machine,
then it needs 1o be a secure

_ voting machime\.//

int main() {

string me = mySource();

if (isSecure(me)) {

} else {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

Decider D machine.

for the secure
voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

~ ~~
This case is the part fhat

int main() { drops us in the ‘else” branch of

string me = mySource(); this if statement, so let's focus
on that part for now,
- o
else {
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure

voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— ™~
In this specific case, we're
suppose o make P be a
secure voting machine,

int main() {

string me = mySource();

N—
else {

—
. o

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P
That means we need fo make P

tnt main() { accept all strings with more r's

string me = mySource(); than d's and not accept
anything else,
_ ~
else {
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm :
M machine.

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— N

The good news is That, a
while back, we already saw
how fo do thaf:

int main() {

string me = mySource();

N—

else { “-.___JF'—”/
} ‘
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure

voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— N

The code looks something like

This,

int main() {
string input = getInput();
string me = mySource();

N—
else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure

voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is not a secure voting machine, then
P is a secure voting machine.

/] Program P 7~ Tust to confirm that this N

works — nofice that if the
input has more v's than d's,
we accept if, and ofherwise

_ we veJecT.\//
else {

if (countRs(input) > countDs(input)) accept();
else reject();

int main() {
string input = getInput();
string me = mySource();

}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure

voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

s If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— N

Okay! So that's one of fwo
requirements down,

\//

int main() {
string input = getInput();
string me = mySource();

N—
else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

program

Decider D
M for the secure
voting problem

Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:

If P is a secure voting machine, then
P is not a secure voting machine.

v

[/ Program P

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) {

}

— N

Let's move on To the other

N—

one.,

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

v

[/ Program P

~
This says That if P is supposed

fo be a secure voling
machine, it needs to nof be

UF (Lssecure(ne)) { a secure voting machine,

N—
}

U~
| o

int main() {
string input = getInput();
string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

v

[/ Program P

— N

There are a lot of ways 1o gef
P to not be a secure voting
machine,

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) { \\\~¥

) \//

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

v

[/ Program P

7 We can literally do anything N
we wanht except accepling
all strings with more v's than
d's and not accepting

if (isSecure(me)) { \\\~; am%ﬂﬂmq ekfiliiij——”/
}

int main() {
string input = getInput();
string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

program
M

i1sSecure

Yes, M is a secure voting

Decider D machine.
for the secure

voting problem ,
No, M is not a secure

voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

v

[/ Program P

int main() {

string input = getInput();

string me = mySource(); anything else” camp would be fo

if (isSecure(me)) { \JMSJY accepT everything,
accept();

}

— ™~

Among the many things we can
do that falls into the ‘literally

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
If P is a secure voting machine, then
P is not a secure voting machine.

v

[/ Program P

/Notice thaf in this case, P s N

not a secure voting machine:
it accepts everything, including
a fon of strings if's nof

if (isSecure(me)) { d fo.
acéept(g; N— i -S.~.../_—’//
}

int main() {
string input = getInput();
string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
/ If P is a secure voting machine, then
P is not a secure voting machine.

v

[/ Program P

— N

So we're done with fhis part
of the design:

if (isSecure(me)) {
acéept(g; \\‘- «__iiiiij——”/
}

int main() {
string input = getInput();
string me = mySource();

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

Contradiction!

i1sSecure

Yes, M is a secure voting
Decider D machine.
for the secure

voting problem

program
M

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
/ If P is a secure voting machine, then
P is not a secure voting machine.
s If P is not a secure voting machine, then
P is a secure voting machine.

// Program P mﬂwg it all fogether, take 2™

look af what we accomplished.
This program is a secure voting
machine it and only if it isnt

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) { a secure voling machine:
accept(); N— q\//
} else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

|

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
/ If P is a secure voting machine, then
P is not a secure voting machine.
s If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— N

int main() { That gives us the contradiction

string input = getInput();

string me = mySource(); That we needed o gef.
if (isSecure(me)) {

acéept(g; \\‘- «__iiiiij——”/
} else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

|

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
/ If P is a secure voting machine, then
P is not a secure voting machine.
s If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

7~ We're doner We've shown N\

That starTing with the assumption
That the secure voting problem
is decidable, we reach a

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) { tradiction.
acéept(g; N— it |C‘Eﬁl-../__—//
} else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

|

Contradiction!

i1sSecure

Yes, M is a secure voting
machine.

program

M Decider D

for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
/ If P is a secure voting machine, then
P is not a secure voting machine.
s If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

You might have noficed Th?

int main() { This program isn’t the one we

string input = getInput();

string me = mySource(); used in lecture, Buf that’s
ce g okay!
if (isSecure(me)) {
accept(); \ \//
} else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

|

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
/ If P is a secure voting machine, then
P is not a secure voting machine.
s If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

— N

There can be all sorfs of
programs that meet the design
specificafion we set out above,
accept();

— —
} else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

|

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
/ If P is a secure voting machine, then
P is not a secure voting machine.
s If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P - N
That’s great news for you,
because it means Thal These sorts

of proots aren't about finding
accept();

a needle in a haystack,
N—
} else {

if (countRs(input) > countDs(input)) accept();
else reject();
}
}

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) {

The secure voting
problem is
decidable.

!

There is a decider
D for the secure
voting problem

!

We can write
programs that
use D as a helper
method

l

Program P is
secure if and only
if program P is
not secure.

|

Contradiction!

i1sSecure

Yes, M is a secure voting

progranm .
M machine.

Decider D
for the secure
voting problem

No, M is not a secure
voting machine.

bool isSecure(string program)

Program P design specification:
/ If P is a secure voting machine, then
P is not a secure voting machine.
s If P is not a secure voting machine, then
P is a secure voting machine.

[/ Program P

- N

As long as you meef the
design criteria, you should be
good 1o go

\//

int main() {
string input = getInput();
string me = mySource();

if (isSecure(me)) {
accept(); \\‘-
} else {
if (countRs(input) > countDs(input)) accept();
else reject();
}
}

~~

Let's take a minute To review
the general process that we
followed 1o gef fhese
results o work,

— —

~~

Let's take a minute To review
the general process that we
followed 1o gef fhese
results o work,

— —

That other guy is going Toa

you a general patfern fo
follow, You might want fo

Take notes.
g

- N

Let's suppose that you want
fo prove that some language
about TMs is undecidable,

— —

The problem in

question is
decidable

—

N—

Start off by assuming if's

™~

decidable,

—
L

The problem in

question is
decidable

-

Contradiction!

—

™~

The goal is to get a
confradiction,

—
L

The problem in

question is
decidable

To get there..

—
L

Contradiction!

The problem in

question is
decidable

l

There is a decider
D for that
problem.

- N

The first step is to suppose
that you have a decider for
The language in gquestion,

— —

Contradiction!

The problem in

question is
decidable

l

There is a decider
D for that
problem.

Contradiction!

Decider D
for this
problem

—

N—

™~

It's often a good idea to
draw a picture showing what

That decider looks like,

\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

Contradiction!

Decider D
for this
problem

o

N—

~~

Think aboul what The inpuls

the decider are going fo

look like, That depends on

the language.

\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

Contradiction!

M Decider D

for this
problem

- ™~

In the cases we're exploring
in This class, there will always
be al least one input thal's

a TM of some sort,
N—

-
L

The problem in

question is
decidable

l

There is a decider
D for that
problem.

Contradiction!

"

Decider D
for this
problem

N—

7 Next, think about what the N

decider is going fo tell you
about those inputs, That
depends on the problem at

hamol.\//

The problem in Yes, M has property X.
question is M Decider D
decidable for this
bl
l probiem No, M doesn't have

property X.

There is a decider
D for that
problem.

A For example, if your language N
is the set of TMs that have
some properTy X, then the
decider will fell you whether

\ﬂne TM has property X,

Contradiction!

The problem in Yes, M has property X.

question is M Decider D
decidable for this
bl
l probiem No, M doesn't have
property X.
There is a decider
D for that
problem.
~ N
l The next step is To think about

We can write how To use that decider as
programs that a subroulTine in some program,

use D as a helper
method ~— \//

Contradiction!

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

Contradiction!

Yes, M has property X.

M Decider D
for this
roblem
P No, M doesn't have
property X.
~

Think abouf what fhe decider
would look like as a method
in some high—level programming
language.

— S~

The problem in Yes, M has property X.

question is M Decider D
decidable for this
bl
l S No, M doesn't have
property X.
There is a decider
D for that
problem.
pVI\‘[(()eg(;zrrln‘;w’;E:t You. already know what m?uTs IT"s
use D as a helper going to take and what it says,
method so try To come up with a nice,
descriptive name for the method.

Nl —

Contradiction!

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

Contradiction!

Yes, M has property X.
M Decider D

for this

roblem
P No, M doesn't have

property X.

bool hasPropertyX(string program)

Tn this case, since our decider™
says whether The program has
some properfy X, a good name
would be something like

_ hastopeva.\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

1T doesn't hurt to label ﬂne\

decider D fo show what parts

of the decider correspond
with the method,

— —

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

The next step is fo buﬂd‘;\\\

self —veferential program fhat
gives you some sort of
contradiction,

N— \//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

You're going to want to
get a contradiction by building a
program Thal has some propery
X if and only if it doesn't have

some property X,

T

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

- ~

Now, you have fo figure outf
how to write program P,

—

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX

program Yes, M has property X.
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

Program P design specification:

We recommend wrifing out
a design specification for the
program that you're going to

ite,
o write

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX
program Yes, M has property X.
M Decider D
for this
roblem
P No, M doesn't have

property X.

bool hasPropertyX(string program)

Program P design specification:

If P has property X, then

P does not have property X.

If P does not have property X, then

P has property X.

—

N—

™~

You can fill out that spec by
reasoning about both directions

of the implicafion,

\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX
program Yes, M has property X.
M Decider D
for this
roblem
P No, M doesn't have

property X.

bool hasPropertyX(string program)

Program P design specification:

If P has property X, then

P does not have property X.

If P does not have property X, then

P has property X.

—

N—

™~

Finally, you have to go and
write a program That gives

you a confradiction,

\//

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

Contradiction!

hasPropertyX

Yes, M has property X.

program
M Decider D
for this
problem

No, M doesn't have
property X.

bool hasPropertyX(string program)

Program P design specification:
If P has property X, then
P does not have property X.
If P does not have property X, then
P has property X.

[/ Program P
qt{,ou follow the design spec,
you'll likely get something like
This, Filling in the blanks fakes

if (hasPropertyX(me)) { N\ some crealivity,
// do something so you don't
// have property X.

} else {
// Do something so you do
// have property X.

}

int main() {
string input = getInput();
string me = mySource();

}

The problem in

question is
decidable

l

There is a decider
D for that
problem.

!

We can write
programs that
use D as a helper
method

l

Program P has
property X if and
only if P doesn't
have property X

|

Contradiction!

hasPropertyX

program
M

Decider D
for this
problem

Yes, M has property X.
No, M doesn't have
property X.

bool hasPropertyX(string program)

Program P design specification:
If P has property X, then

P does not have property X.

If P does not have property X, then

P has property X.

[/ Program P

int main() {

}

string input = getInput();
string me = mySource();

if (hasPropertyX(me)) {
// do something so you don't

// have property X.

} else {
// Do something so you do

}

// have property X.

—

N

™~

And now you have a
contradiction:

\//

—

Hope this helps:

Please feel free fo ask

™~

guestions if you have them,

- N
Did you find this useful? 1f

so, let us know: We can go
and make more guides like fhese,

— —

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	1.pdf
	Slide 1

