

Here’s a supplementary resource that
explains self-reference proofs in more

detail than we did in class.

You won’t be expected to write proofs like
this so going through these slides is

completely optional, but we thought we’d
include them in case you’re curious :)

The Guide to Self-Reference

☺

Hi everybody!

Self-reference proofs can be
pretty hard to understand the

first timee you see themee

If you're confused – that's okay!
It's totally normeale This stuf is

trickye

Once you get a better sense for
how to structure these proofs,

I think you'll find that they're not
as bad as they initially seemee

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

This lecture slide was the first timee
 that we really saw self-reference,
and a lot of you got pretty tripped

up by what was going one

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Part of the reason why this can be
tricky is that what you're looking at
is a finished producte If you don't

have a sense of where it comees frome,
it's really hard to understand!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Let's see where it comees frome!

We'll take it frome the tope

Let's try to use self-reference
to prove that ATM is undecidablee

At a high level, we're going to do
a proof by contradictione

ATM ∈ R

We're going to start of by
assumeing that ATM is decidablee

ATM ∈ R

Someehow, we're going to try to
use this to get to a contradictione

Contradiction!

ATM ∈ R

If we can get a contradiction –
any contradiction – we'll see

that our assumeption was wronge

Contradiction!

ATM ∈ R

The challenge is figuring out
exactly how to go and do thise

Contradiction!

ATM ∈ R

Rather than just jumeping all the
way to the end, let's see what
our initial assumeption tells use

Contradiction!

ATM ∈ R

We're assumeing that ATM is
decidablee What does that meean?

Contradiction!

ATM ∈ R

Well, a language is decidable if
there's a decider for it, so that

meeans there's somee decider for ATMe
Let's call that decider De

Contradiction!

There is a decider
D for ATM

ATM ∈ R

What meight this decider look like?

Contradiction!

There is a decider
D for ATM

ATM ∈ R

A decider for a language is a
Turing meachine with a few key

propertiese

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

ATM ∈ R

First, it has to always halte

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

ATM ∈ R

That meeans that if you give it
any input, it has to either accept
or reject ite We'll visualize this
with these two possible outputse

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

ATM ∈ R

Next, the decider has to tell us
someething about ATMe

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

ATM ∈ R

Next, the decider has to tell us
someething about ATMe

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a remeinder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

ATM ∈ R

Specifically, the decider D needs
to take in an input and tell us
whether that input is in ATM

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a remeinder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

ATM ∈ R

ATM is a language of pairs of
TMs and strings, so D will

take in two inputs, a meachine
M and a string we

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a remeinder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

M

w

ATM ∈ R

If D accepts its input, it
meeans that ⟨M, w is in A⟩ TMe

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a remeinder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

M

w

Yes, M accepts w.

ATM ∈ R

Otherwise, if D rejects its input,
it meeans that M doesn't accept we

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

As a remeinder, ATM is the language

{ ⟨M, w⟩ | M is a TM and M accepts w }

M

w

Yes, M accepts w.

No, M does not accept w.

ATM ∈ R

So now we've got this TM D
lying arounde What can we do

with it?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

ATM ∈ R

We've seen the idea that TMs can
run other TMs as subroutinese This
meeans we can write programes that

use D as a subroutinee

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

ATM ∈ R

Since TMs are kinda like programes,
we can imeagine that D is a helper

meethod that looks like thise

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

ATM ∈ R

In meathemeatics, the convention is
to use single-letter variable namees
for everything, which isn't good

programemeing stylee

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

ATM ∈ R

Here, the meethod namee
(willAccept) is just a fancier and
meore descriptive namee for De

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept

ATM ∈ R

The two argumeents to willAccept
then correspond to the inputs to

the decider De

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

ATM ∈ R

When thinking of D as a decider,
we think of it accepting or

rejectinge In programemeing-speak,
it's like returning a booleane

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

ATM ∈ R

So at this point we've just set up
the fact that this subroutine existse
What exactly are we going to do

with it?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

ATM ∈ R

Ultimeately, we're trying to get
a contradictione

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

ATM ∈ R

Specifically, we're going to build
a programe – which we'll call P –

that has somee really broken
behavior. it will accept its input
if and only if it doesn't accept

its input!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

If you're wondering how on earth
you were supposed to figure out
that that's the next step, don't

panice The first timee you see it, it
looks totally crazye Once you've
done this a few timees, you'll

get a lot meore comefortable with ite

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

Now, we haven't actually written
this programe P yete That's the

next stepe

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

If you look at what we've said,
right now we have a goal of what
P should do, not how P actually

does thate

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

You can think of this requiremeent
as a sort of “design specificatione”

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

ATM ∈ R

Let's actually go write out a spec
for what P needs to do!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:

ATM ∈ R

Since this requiremeent is an “if and
only if,” we can break it down into

two casese

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:

ATM ∈ R

First, if this programe P is supposed
to accept its input, then it needs

to not accept its inpute

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.

ATM ∈ R

Next, if this programe P is supposed
to not accept its input, then it

needs to accept its inpute

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

ATM ∈ R

We now have a specification for
what programe P is supposed to doe

Let's see how to write it!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

We'll write it in the space
over to the lefte

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string me = mySource();
 string input = getInput();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Like meost programes, our
programe begins execution

in meain()e

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Our programe needs to
get somee input, so let's

do that heree

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Now, we someehow need to
meeet the design spec given

abovee

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

That meeans we need to be
able to figure out whether
we're going to accepte

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

bool willAccept(string program, string input)

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

We've got this handy meethod
lying around that will let us
know whether any programe will

accept any inpute

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

What if we had programe P ask
whether it was going to accept

someething?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Crazy as it seemes, that's
someething we can actually do!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

First, let's have our programe
get its own source codee

(We know this is possible! We
saw how to do it in classe)

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Next, let's call this meagic
willAccept meethod to ask whether
we (programe P) are going to

accept our inpute

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Now, let's look back at our
design specification and see what

we need to doe

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Our specification says that, if
this programe is supposed to

accept its input, then it needs
to not accept its inpute

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

What's someething we can do to
not accept our input?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

There's a couple of options
here, actuallye One of theme is

to just go and reject!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So we've taken care of that
part of the designe

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

What about this part?

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

This says that if we aren't
supposed to accept the input,
then we should accept the

inpute

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So let's go add this line to
our programee

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

And hey! We're done with this
part of the design spece

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So let's take a quick look over
our programe Pe

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

This is what we said that P
was supposed to doe

And hey! That's what it doese

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

The whole point of this exercise
was to get a contradictione

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

And, indeed, that's what we've
done! There's a contradiction
here because P accepts if and
only if it doesn't accepte

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So if you trace through the
imeplications here.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So if you trace through the
imeplications here.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So if you trace through the
imeplications here.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

So if you trace through the
imeplications here.

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

You can see that the starting
assumeption that ATM is
decidable leads to a

contradiction – we're done!

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Here's that initial lecture
slide againe

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Take a look at it meore
closelye

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Recognize this code? Now you
know where it comees frome!

What does this program do?

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

bool willAccept(string program, string input) {
 /* … some implementation … */
}

int main() {
string me = mySource();
string input = getInput();

if (willAccept(me, input)) {
reject();

} else {
accept();

}
}

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

Try running this program on any input.
What happens if

… this program accepts its input?
It rejects the input!

… this program doesn't accept its input?
It accepts the input!

We created it to get these
contradictionse

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

This meight seeme like a lot – and
in meany ways it ise

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

The key idea here is what's
given over there on the left

columene

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

This progression comees up in
all the self-reference proofs

we've done this quartere

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

We'll do another exameple of
this in a little bite

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Before we meove on, though,
I thought I'd take a meinute to

talk about a few comemeon
questions we gete

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

First, let's jumep back to this
part of the programe P that

we wrotee

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

This is the case where programe
P is supposed to accept its

inpute We need to programe it
so that it doesn'te

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Here, the specific way we ended
up doing that was by having
programe P reject its inpute

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

I meentioned that there were
other things we could do here

as welle

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Here's another optione We could
have the programe go into an
infinite loop in this casee

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

The design spec here says that
P needs to not accept in this
case, and indeed, that's what

happens!

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

A lot of people ask us whether
this is allowed, since we were
assumeing we had a decider
and deciders can't loope

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Turns out, this is totally fine!

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

There are two diferent
programes heree

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

First, there's this decider De
D is a decider, so it's

required to halt on all inputse

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

There's also this programe Pe
Programe P isn't the decider
for ATM, so it's not required

to halt on all inputse

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Going forward, remeemeber that
these proofs involve two

diferent programes: the decider
for the language, and the
self-referential programee

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

The decider is always required
to halt, but the programe P

is note

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 while (true) { }
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Let's undo all these changes
so that we can talk about
the next comemeon questione

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Much better!

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

On to the next questione

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

A lot of people take a look at
the programe we've written.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

. and ask what happens if we
take these two lines.

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

. and swap theme like thise

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Usually, people ask whether we
could have just done this and

ended up proving that ATM ∈ Re

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Turns out, that doesn't worke
Let's see whye

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Notice that this programe P
doesn't have the behavior given

over heree

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

If you think about the behavior
it does have, it looks meore

like thise

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Notice that this is a true
statemeente

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Originally, we got a contradiction
heree

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Instead, we've shown that
we end up at a true statemeente

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

However, take a meinute to look
at the giant imeplication given

heree

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Overall, this shows that

ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Does this statemeent say anything
about whether ATM is decidable?

ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Nope! Remeemeber, anything
imeplies a true statemeente

ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

We have no way of knowing
whether ATM ∈ R or not just
by looking at this statemeente

ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

The fact that we didn't get
a contradiction doesn't meean

that ATM is decidablee
ATM ∈ R → ⊤

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 accept();
 } else {
 reject();
 }
}

ATM ∈ R

⊤

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
accept its input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Just so we don't get confused,
let's reset everything back to

how it used to bee

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Much better!

bool willAccept(string program, string input)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (willAccept(me, input)) {
 reject();
 } else {
 accept();
 }
}

ATM ∈ R

Contradiction!

There is a decider
D for ATM

Decider D
for ATM

M

w

Yes, M accepts w.

No, M does not accept w.

We can write
programs that

use D as a helper
method

willAccept
program

input

Program P
accepts its input

if and only if
program P does
not accept its

input

Program P design specifcation:
If P accepts its input, then

P does not accept its input.
If P does not accept its input, then

P accepts its input.

✓

✓

Take a look at the general
structure of how we got heree
Then, let's go do another

exameplee

Do you remeemeber the secure
voting probleme frome lecture?

We said that a TM M is a
secure voting meachine if it

obeys the above rulee

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

That's kind of a lot to take
in at oncee

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

Remeemeber – the language of a TM
is the set of all the strings it

acceptse

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

So really this statemeent meeans that
M accepts every string with meore
r's than d's and nothing elsee

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

Our goal was to show that it's
not possible to build a programe
that can tell whether an arbitrary
TM is a secure voting meachinee

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

Notice that our goal was not to
show that you can't build a secure

voting meachinee

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

It's absolutely possible to do
thate

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();
 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();
 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

The hard part is being able to
tell whether an arbitrary programe

is a secure voting meachinee

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();
 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();
 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

Here's a programe where no one
knows whether it's a secure

voting meachinee

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

You can see this because no one
knows whether this part will

always termeinatee

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

It's entirely possible that this
goes into an infinite loop on
somee input – we're honestly

not sure!

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

So, to recap:
Building a secure voting meachine isn't harde
Checking whether an arbitrary programe is a

secure voting meachine is really harde

M is a secure voting machine

if and only if

ℒ(M) = { w ∈ {r, d}* | w has more r's than d's }

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

int main() {
 string input = getInput();

 int n = countRs(input);
 while (n > 1) {
 if (n % 2 == 0) n = n / 2;
 else n = 3*n + 1;
 }

 if (countRs(input) > countDs(input)) {
 accept();
 } else {
 reject();
 }
}

Our goal is to show that the secure voting
probleme – the probleme of checking whether a

programe is a secure voting meachine – is
undecidablee

Following our pattern frome before, we'll
assumee that the secure voting probleme is

decidablee

The secure voting
problem is
decidable.

We're ultimeately trying to get somee kind of
contradiction heree

The secure voting
problem is
decidable.

Contradiction!

As before, we'll take it one step at a timeee

The secure voting
problem is
decidable.

Contradiction!

First, since we're assumeing that the secure
voting probleme is decidable, we're assumeing

that there's a decider for ite

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

So what does that look like?

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

A decider for the secure voting probleme will
take in somee TM M, which is the meachine

we want to specifically checke

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M

The decider will then accept if M is a secure
voting meachine and reject otherwisee

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

Following our pattern frome before, we'll
then say that we can use this decider as a

subroutine in other TMse

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

In software, that decider D meight look
someething like what's given abovee

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

Here, isSecure is just another namee for the
decider D, but with a meore descriptive

nameee

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure

Its argumeent (programe) is just a meore
descriptive namee for the TM (programe) given

as inpute

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

This was the point in the previous proof where
we started to write a design spec for somee

self-referential programe Pe

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Previously, we wrote P to get this contradiction:
“P accepts if and only if it doesn't accepte”

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

That was a great contradiction to get when
we had a decider that would tell us whether

a programe would accept a given inpute

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

The probleme here is that our decider doesn't
do thate Instead, it tells us whether a programe

is a secure voting meachinee

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Following the meaxime of “do what you can with
what you have where you are,” we'll try to
set up a contradiction concerning whether a

programe is or is not a voting meachinee

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Specifically, we're going to build a programe P
that is a secure voting meachine if and only if

it's not a secure voting meachinee

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Generally speaking, you'll try to set up a
contradiction where the programe has the property
given by the decider if and only if it doesn't

have the property given by the decidere

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Generally speaking, you'll try to set up a
contradiction where the programe has the property
given by the decider if and only if it doesn't

have the property given by the decidere

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Pay attention to that other guy! That's
really, really good advice!

So now we have to figure out how to write this
programe Pe

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

As before, let's start by writing out a design
specification for what it's supposed to doe

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:

This first part takes care of the first half of
the biconditionale

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.

This second part takes care of the other
directione

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

At this point, we have written out a spec
for what we want P to doe All that's left to

do now is to code it up!

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

In lecture, we wrote one particular programe
that meet these requiremeentse For the sake of
simeplicity, I'me going to write a diferent one

heree Don't worry! It works just finee

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Our programe starts of in
meain()e

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Ultimeately, we need to figure
out if we're a secure voting

meachine or note

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

bool isSecure(string program)

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

The best tool we have for that
is somee kind of self-reference

tricke

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

As before, we'll use the fact
 that we have this decider lying
around to meake P figure out

what exactly it doese

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Specifically, let's have programe
P ask what it's going to doe

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Let's take it one step at a
timeee

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Oddly enough, let's look at the
second requiremeent firste
Why? I ask: why not?

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

This requiremeent says that if
the programe is supposed to not
be a secure voting meachine,
then it needs to be a secure

voting meachinee

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

This case is the part that
drops us in the “else” branch of
this if statemeent, so let's focus

on that part for nowe

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

In this specific case, we're
suppose to meake P be a
secure voting meachinee

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

That meeans we need to meake P
accept all strings with meore r's

than d's and not accept
anything elsee

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

The good news is that, a
while back, we already saw

how to do that!

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

The code looks someething like
thise

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Just to confirme that this
works – notice that if the

input has meore r's than d's,
we accept it, and otherwise

we rejecte

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Okay! So that's one of two
requiremeents downe

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Let's meove on to the other
onee

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

This says that if P is supposed
to be a secure voting

meachine, it needs to not be
a secure voting meachinee

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

There are a lot of ways to get
P to not be a secure voting

meachinee

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

We can literally do anything
we want except accepting

all strings with meore r's than
d's and not accepting

anything elsee

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Ameong the meany things we can
do that falls into the “literally
anything else” camep would be to

just accept everythinge

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Notice that in this case, P is
not a secure voting meachine:
it accepts everything, including

a ton of strings it's not
supposed toe

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

So we're done with this part
of the design!

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

Putting it all together, take a
look at what we accomeplishede
This programe is a secure voting
meachine if and only if it isn't

a secure voting meachine!

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

That gives us the contradiction
that we needed to gete

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

We're done! We've shown
that starting with the assumeption
that the secure voting probleme

is decidable, we reach a
contradictione

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

You meight have noticed that
this programe isn’t the one we
used in lecturee But that’s

okay!

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

There can be all sorts of
programes that meeet the design
specification we set out abovee

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

That’s great news for you,
because it meeans that these sorts
of proofs aren’t about finding

a needle in a haystacke

✓

✓

bool isSecure(string program)

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (isSecure(me)) {
 accept();
 } else {
 if (countRs(input) > countDs(input)) accept();
 else reject();
 }
}

The secure voting
problem is
decidable.

Contradiction!

There is a decider
D for the secure
voting problem

Decider D
for the secure
voting problem

M
Yes, M is a secure voting
machine.

No, M is not a secure
voting machine.

We can write
programs that

use D as a helper
method

isSecure
program

Program P is
secure if and only

if program P is
not secure.

Program P design specifcation:
If P is a secure voting machine, then

P is not a secure voting machine.
If P is not a secure voting machine, then

P is a secure voting machine.

As long as you meeet the
design criteria, you should be

good to go!

✓

✓

Let's take a meinute to review
the general process that we

followed to get these
results to worke

Let's take a meinute to review
the general process that we

followed to get these
results to worke

That other guy is going to tell
you a general pattern to
followe You meight want to

take notese

Let's suppose that you want
to prove that somee language
about TMs is undecidablee

Start of by assumeing it's
decidablee

The problem in
question is
decidable

The goal is to get a
contradictione

The problem in
question is
decidable

Contradiction!

To get there.

The problem in
question is
decidable

Contradiction!

.the first step is to suppose
that you have a decider for
the language in questione

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

It's often a good idea to
draw a picture showing what

that decider looks likee

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

Think about what the inputs
to the decider are going to
look likee That depends on

the languagee

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

In the cases we're exploring
in this class, there will always
be at least one input that's

a TM of somee sorte

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M

Next, think about what the
decider is going to tell you
about those inputse That

depends on the probleme at
hande

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M

For exameple, if your language
is the set of TMs that have
somee property X, then the
decider will tell you whether
the TM has property Xe

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

The next step is to think about
how to use that decider as

a subroutine in somee programee

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

Think about what the decider
would look like as a meethod

in somee high-level programemeing
languagee

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

You already know what inputs it's
going to take and what it says,
so try to comee up with a nice,

descriptive namee for the meethode

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

In this case, since our decider
says whether the programe has
somee property X, a good namee

would be someething like
hasPropertyXe

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

It doesn't hurt to label the
decider D to show what parts
of the decider correspond

with the meethode

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

hasPropertyX
program

The next step is to build a
self-referential programe that

gives you somee sort of
contradictione

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

hasPropertyX
program

You're going to want to
get a contradiction by building a
programe that has somee property
X if and only if it doesn't have

somee property Xe

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

hasPropertyX
program

Now, you have to figure out
how to write programe Pe

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

hasPropertyX
program

We recomemeend writing out
a design specification for the
programe that you're going to

writee

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specifcation:

hasPropertyX
program

You can fill out that spec by
reasoning about both directions

of the imeplicatione

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specifcation:
If P has property X, then

P does not have property X.
If P does not have property X, then

P has property X.

hasPropertyX
program

Finally, you have to go and
write a programe that gives

you a contradictione

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specifcation:
If P has property X, then

P does not have property X.
If P does not have property X, then

P has property X.

hasPropertyX
program

If you follow the design spec,
you'll likely get someething like
thise Filling in the blanks takes

somee creativitye

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specifcation:
If P has property X, then

P does not have property X.
If P does not have property X, then

P has property X.

hasPropertyX
program

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (hasPropertyX(me)) {
 // do something so you don't
 // have property X.
 } else {
 // Do something so you do
 // have property X.
 }
}

And now you have a
contradiction!

The problem in
question is
decidable

Contradiction!

There is a decider
D for that
problem.

Decider D
for this
problem

M
Yes, M has property X.

No, M doesn't have
property X.

We can write
programs that

use D as a helper
method

bool hasPropertyX(string program)

Program P has
property X if and
only if P doesn't
have property X

Program P design specifcation:
If P has property X, then

P does not have property X.
If P does not have property X, then

P has property X.

hasPropertyX
program

// Program P

int main() {
 string input = getInput();
 string me = mySource();

 if (hasPropertyX(me)) {
 // do something so you don't
 // have property X.
 } else {
 // Do something so you do
 // have property X.
 }
}

Hope this helps!

Please feel free to ask
questions if you have themee

Did you find this useful? If
so, let us know! We can go

and meake meore guides like thesee

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210
	Slide 211
	Slide 212
	Slide 213
	1.pdf
	Slide 1

